Chemical Resistance Guide

It is important to consider the effects of chemical exposure to materials in the design stage. Many factors should be evaluated, including chemical type, concentration, duration of exposure, and operating temperature. Enduro Composites should be contacted for material recommendations regarding specific applications and for information on chemical exposures not listed in this guide.

Enduro Composites offers Tuff Span panels in two standard resin systems, which provide outstanding corrosion protection for a broad range of applications. Premium grade isophthalic polyester is recommended for splash and spill chemical exposure and moderate operating temperatures. Having better strength retention at elevated temperatures, vinyl ester is recommended for certain higher temperatures and chemical exposures.

	Max. Cont. Temp. (°F)			
Chemical		Iso Polyester	Vinyl Ester	
Acetic Acid	10	150	210	
Acetic Acid	50	125	180	
Acetone	All	NR	180	
Alum	Vapor	150	210	
Aluminum Potassium Sulfate	All	150	210	
Aluminum Sulfate	All	150	210	
Ammonia	_	_	100	
Ammonium Hydroxide	10	90	160	
Ammonium Nitrate	All	150	210	
Benzene	All	90	NR	
Benzenesulfonic Acid	30	150	210	
Bromine (Dry & Wet Gases)	100	90	100	
Calcium Chloride	All	150	210	
Carbon Tetrachloride	Vapor	70	175	
Chlorine Dioxide	Fumes	90	210	
Chlorine (Wet Gas)	All	90	210	
Chlorine Cell Plant	Fumes	90	210 (4)	
Chromic Acid	10	_	150	
Cooling Tower Water	_	130	170	
Copper Sulfate	All	150	210	
Diammonium Phosphate	Vapor	90	210	
Dibutyl Phthalaic	100	90	150	
Ethylene Chlorohydrin	100	90	150	
Ethylene Dichloride	All	NR	100	
Ethylene Glycol	All	150	210	
Fatty Acids	100	150	210	
Ferrous Sulfate	All	150	210	
Flousilicic Acid	10	100 (4)	180 (4)	
Fungicides, Organic	100	90	_	
Hydrochloric Acid	15	150	210	
Hydrochloric Acid	32	100	180	
Hydrochloric Acid	Vapor	150	210	
Hydrofluoric Acid	10	100 (4)	150 (4)	
Hydrogen Chloride (Gas)	100	120	210	
Hydrogen Sulfide	All	150	210	

	Max. Cont. Temp. (°F)		
Chemical	%	Iso Polyester	Vinyl Ester
Kerosene/Fuel Oil	100	150	180
Magnesium Chloride	100	150	210
Methyl Alcohol	100	90	120
Mineral Oil	100	150	210
Naptha	100	150	180
Nitric Acid	5	150	160
Nitric Acid	20	_	120
Nitric Acid Vapor	20	150	180
Phosphoric Acid	85	150	210
Potassium Aluminum Sulfate	Sat'd	150	210
Sodium Bicarbonate	10	140	180
Sodium Bisulfate	All	150	210
Sodium Carbonate	All	90	160
Sodium Chloride	Sat'd	150	210
Sodium Hydroxide	5	150	180
Sodium Hydroxide	Vapor	150	180
Sodium Hypochlorite	5	125	180
Sodium Hypochlorite	Vapor	150	180
Sodium Nitrate	All	150	210
Sodium Silicate	All	NR	210
Sodium Sulfate	All	150	210
Soya Oil	100	130	210
Sulfite Liquors	_	120	210
Sulfur Dioxide	Dry/Wet	150	210
Sulfur Trioxide	100	90	210
Sulfuric Acid	50	150	210
Sulfuric Acid	70	150	180
Sulfuric Acid	Vapor	150	210
Tannic Acid	All	150	210
Trisodium Phosphate	25	_	210
Urea	Sat'd	90	180
Water Distilled	100	150	210
Water (city/sea)	100	150	210
Zinc Sulfate	All	150	210

Notes

- 1. Design engineers and plant personnel should use this guide to help with selecting the appropriate resin for their application. Since specific applications vary, this information should be used as a guide only and not considered as a guarantee of performance.
- 2. The information shown is for standard Tuff Span iso-polyester and vinyl ester materials having a Class I Flame Spread rating.
- 3. The resin system for Tuff Span FM approved panels is an iso-polyester with specific additives for enhanced fire retardance. The chemical resistance for Tuff Span FM Series panels is excellent but should not be considered the same as standard iso-polyester. Enduro Composites should be contacted for specific recommendations.
- 4. A surfacing veil is recommended for this exposure.